Page 1 of 1

Implement the Bernstein-Vazirani algorithm to find the secret value, 170. (Hint: use the decimal to binary utility).

Posted: Sat Aug 12, 2023 4:41 am
by quantumadmin
The Bernstein-Vazirani algorithm efficiently finds the secret value of a black-box function. In this case, the secret value is 170, which can be represented in binary as '10101010'.

Here's the implementation of the Bernstein-Vazirani algorithm to find the secret value 170:

Code: Select all

from qiskit import QuantumCircuit, Aer, execute

# Define the secret value (170 in binary: '10101010')
secret_value = '10101010'

# Determine the number of qubits needed
n = len(secret_value)

# Create a quantum circuit with n+1 qubits (n input qubits and 1 ancillary qubit)
circuit = QuantumCircuit(n+1, n)

# Apply Hadamard gates to input qubits
circuit.h(range(n))

# Apply the oracle for the secret value
for i, bit in enumerate(secret_value):
    if bit == '1':
        circuit.cx(i, n)

# Apply Hadamard gates again to input qubits
circuit.h(range(n))

# Measure the input qubits
circuit.measure(range(n), range(n))

# Simulate the circuit
simulator = Aer.get_backend('qasm_simulator')
job = execute(circuit, simulator, shots=1)

# Get and print the measurement result
result = job.result().get_counts()
print("Measured Result:", result)
When you run this code, you should observe that the measurement result matches the secret value '10101010', which is 170 in decimal. The output should be something like {'10101010': 1}, indicating that the algorithm successfully determined the secret value using the Bernstein-Vazirani algorithm.

You can modify the secret_value variable to experiment with different secret values and test the algorithm's performance.